Skip to main content
Log in

The pH effects on the capacitive behavior of nanostructured molybdenum oxide

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Nanostructured molybdenum oxide having a particle size in the range of 30–80 nm was prepared by potentiodynamic electrodeposition method, and the effects of H2SO4 concentration on its capacitive behavior were studied by cyclic voltammetry, galvanostatic discharge, and electrochemical impedance spectroscopy. Poor to fair capacitive behaviors were witnessed depending on the electrolyte concentration and conditions of charge/discharge. Increasing acid concentration to 0.02 M had favorable effect, while beyond that, the effect was detrimental. Capacitance around 600 F g−1 was recorded in the potential range of 0 to −0.55 V vs. Ag/AgCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bailar JC, Emeléus HJ, Nyholm SR, Trotman-Dickenson AF (eds) (1973) Comprehensive inorganic chemistry vol 3. Pergamon, Oxford

    Google Scholar 

  2. Heracleous E, Lee AF, Vasalos IA, Lemonidou AA (2003) Catal Lett 88:47. doi:10.1023/A:1023534816277

    Article  CAS  Google Scholar 

  3. Ferroni M, Guidi V, Martinelli G, Sacerdoti M, Nelli P, Sberveglieri G (1998) Sens Actuator B 48:285. doi:10.1016/S0925-4005(98) 00057-4

    Article  Google Scholar 

  4. Imawan C, Steffes H, Solzbacher F, Obermeier E (2001) Sens Actuator B 77:346. doi:10.1016/S0925-4005(01) 00732-8

    Article  Google Scholar 

  5. Granqvist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, Amsterdam

    Google Scholar 

  6. Shembel E, Apostolova R, Nagirny V, Kirsanova I, Grebenkin P, Lytvyn P (2005) J Solid State Electrochem 9:96. doi:10.1007/s10008-004-0565-2

    Article  CAS  Google Scholar 

  7. Yebka B, Julien C, Nazri GA (1999) Ionics 5:236. doi:10.1007/BF02375846

    Article  CAS  Google Scholar 

  8. Christian PA, Carides JN, DiSalvo FJ, Waszczak V (1980) J Electrochem Soc 127:2315. doi:10.1149/1.2129404

    Article  CAS  Google Scholar 

  9. McEvoy TM, Stevenson KJ (2003) Anal Chim Acta 496:39. doi:10.1016/j.aca.2002.10.001

    Article  CAS  Google Scholar 

  10. McEvoy TM, Stevenson KJ (2004) J Mater Res 19:429. doi:10.1557/jmr.2004.19.2.429

    Article  CAS  Google Scholar 

  11. McEvoy TM, Stevenson KJ, Hupp JT, Dang X (2003) Langmuir 19:4316. doi:10.1021/la027020u

    Article  CAS  Google Scholar 

  12. Pathan HM, Min SK, Jung KD, Joo OS (2006) Electrochem Commun 8:273. doi:10.1016/j.elecom.2005.11.022

    Article  CAS  Google Scholar 

  13. Guerfi A, Dao LH (1989) J Electrochem Soc 136:2435. doi:10.1149/1.2097408

    Article  CAS  Google Scholar 

  14. Nagirnyi VM, Apostolova RD, Baskevich AS, Shembel EM (2004) Russ J Appl Chem 77:71. doi:10.1023/B:RJAC.0000024579.88110.c3

    Article  CAS  Google Scholar 

  15. Więcek B, Twardoch U (2004) J Phys Chem Solids 65:263. doi:10.1016/j.jpcs.2003.08.022

    Article  Google Scholar 

  16. Prasad KR, Koga K, Miura N (2004) Chem Mater 16:1845. doi:10.1021/cm0497576

    Article  CAS  Google Scholar 

  17. Prasad KR, Miura N (2004) J Power Sources 135:354. doi:10.1016/j.jpowsour.2004.04.005

    Article  CAS  Google Scholar 

  18. Prasad KR, Miura N (2004) Electrochem Commun 6:1004. doi:10.1016/j.elecom.2004.07.017

    Article  Google Scholar 

  19. Prasad KR, Miura N (2004) Electrochem Commun 6:849. doi:10.1016/j.elecom.2004.06.009

    Article  CAS  Google Scholar 

  20. Więcek B, Kępas-Suwara A (2007) Pol J Chem 81:129

    Google Scholar 

  21. Takasu Y, Ohnuma T, Sugimoto W, Murakami Y (1999) Electrochemistry 67:1187

    CAS  Google Scholar 

  22. Farsi H, Gobal F, Raissi H, Moghiminia S (2009) On the psuedocapacitive behavior of nanostructured molybdenum oxide. J Solid State Electrochem. doi:10.1007/s10008-009-830-5

  23. García-Cañadas J, Mora-Seró I, Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G (2004) J Electroanal Chem 565:329. doi:10.1016/j.jelechem.2003.10.027

    Article  Google Scholar 

  24. Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum, New York

    Google Scholar 

  25. Lin C, Ritter JA, Popov BN, White RE (1999) J Electrochem Soc 146:3168. doi:10.1149/1.1392450

    Article  CAS  Google Scholar 

  26. Farsi H, Gobal F (2007) J Solid State Electrochem 11:1085. doi:10.1007/s10008-006-0242-8

    Article  CAS  Google Scholar 

  27. Farsi H, Gobal F (2009) J Solid State Electrochem 13:433. doi:10.1007/s10008-008-0576-5

    Article  CAS  Google Scholar 

  28. Pico F, Ibañez J, Centeno TA, Pecharroman C, Rojas RM, Amarilla JM, Rojo JM (2006) Electrochim Acta 51:4693. doi:10.1016/j.electacta.2005.12.040

    Article  CAS  Google Scholar 

  29. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) J Phys Chem B 109:7330. doi:10.1021/jp044252o

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Farsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farsi, H., Gobal, F., Raissi, H. et al. The pH effects on the capacitive behavior of nanostructured molybdenum oxide. J Solid State Electrochem 14, 681–686 (2010). https://doi.org/10.1007/s10008-009-0828-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-009-0828-z

Keywords

Navigation